当前位置 当前位置: 首页 >  资讯中心 >  企业新闻
caseXqBoxCenterLmenu

电力变压器短路危害,原因分析和改善措施

2024.07.13
阅读:656次
电力变压器是电力系统中提供能源消耗的基础部分,也是*电力*运行的重要感应装置,其组成结构是由初级线圈、次级线圈和铁芯而组成,利用电磁感应的原理来改变交流电压的装置,经过长期的技术改造,整个供电工作可靠程度和稳定性不断提升,但其中仍埋下各种突出的隐患,一些变压器装置由于自身抗短路冲击能力不足,容易滋生短路现象,为了有效判断故障的原因以及位置,必须要加大对变压器故障以及诊断技术的研究,从而采用对应的技术有效的解决变压器故障诊断的效率。
电力变压器短路的危害
1.冲击电流的影响:变压器突然短路会产生很大的短路电流,持续时间虽然短,但在变压器主回路还未切断之前,这种隐患就可能已经形成,形成之后可能带来的问题就是变压器内部受损,绝缘程度下降等。
2.电动力的影响:短路时,过电流会产生很大的电动力,影响稳定,严重时,对变压器的绕组会产生一定程度的影响,比如:绕组变形,破坏绕组的绝缘强度,其他组件也会受到损坏,严重时,可能造成电力变压器燃烧等电力*事故。
电力变压器短路的原因
  1. 目前计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。

    202407131042289980.png

2.采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。
3.抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,*热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受*次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,*高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。
4.绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。
5.采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。
6.套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。
7.作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电磁线上的弯应力过大而发生变形。
8.绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。
9.绕组的预紧力控制不当造成普通换位导线的导线相互错位。
返回顶部

返回顶部